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Abstract 

Objectives: This paper illustrates how Semantic Web technologies (especially RDF, OWL, and 

SPARQL) can support information integration and make it easy to create semantic mashups (semantically 

integrated resources). In the context of understanding the genetic basis of nicotine dependence, we 

integrate gene and pathway information and show how three complex biological queries can be answered 

by the integrated knowledge base. 

Methods: We use an ontology-driven approach to integrate two gene resources (Entrez Gene and 

HomoloGene) and three pathway resources (KEGG, Reactome and BioCyc), for five organisms, 

including humans. We created the Entrez Knowledge Model (EKoM), an information model in OWL for 

the gene resources, and integrated it with the extant BioPAX ontology designed for pathway resources. 

The integrated schema is populated with data from the pathway resources, publicly available in BioPAX-

compatible format, and gene resources for which a population procedure was created. The SPARQL 

query language is used to formulate queries over the integrated knowledge base to answer the three 

biological queries. 

Results: Simple SPARQL queries could easily identify hub genes, i.e., those gene whose gene products 

participate in many pathways (query 1) or interact with many other gene products (query 2). The 

identification of the genes expressed in the brain (query 3) turned out to be more difficult, due to the lack 

of a common identification scheme for proteins. 

Conclusion: Semantic Web technologies provide a valid framework for information integration in the life 

sciences. Ontology-driven integration represents a flexible, sustainable and extensible solution to the 

integration of large volumes of information. Additional resources, which enable the creation of mappings 

between information sources, are required to compensate for heterogeneity across namespaces. 
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1 Introduction 

Nicotine dependence is a common condition. It is estimated that, worldwide, over one billion people 

smoke tobacco. The detrimental consequences of smoking on health are well known and include coronary 

heart disease, lung cancer and chronic obstructive pulmonary disease. The heritability of nicotine 

dependence has long been established and we know that approximately 40-60% of nicotine dependence is 

due to genetic contributions, while the remainder is largely environmental [1-3]. In the past few years, 

genome-wide linkage and association studies have identified several candidate genes (e.g., GABAB2, 

CHRNA4, DDC, BDNF, and COMT.) [4-6]. Saccone et al. identified and screened 449 human genes 

putatively involved with nicotine dependence [6]. In addition to identifying the genes, it is important to 

understand their functions and interactions, including their involvement in biological pathways. For 

example, from a research management perspective, identification of “hub” genes (i.e., genes involved in 

multiple pathways) can help identify further research efforts. 

Complex biological queries generally require the integration of information from several sources, 

including gene information sources, such as Entrez Gene [7], and pathway information sources, such as 

KEGG (Kyoto Encyclopedia for Genes and Genomics) [8]. Moreover, comparing results across model 

organisms requires homology information (provided, e.g. by HomoloGene [9]). In addition to KEGG, 

other major sources of pathway information include BioCyc [10] and Reactome [11]. These resources are 

generally cross-referenced, which makes it easy for users to navigate among them in web-based 

environments. Interlinking is not the same as integration, however; and these resources do not support the 

automatic and high-throughput information processing required for answering complex queries over large 

amounts of data from heterogeneous sources. 

The first obstacle to integration is the format used for the representation of these information sources. The 

resources available from the National Center for Biotechnology Information (NCBI) Entrez system, such 

as Entrez Gene and HomoloGene, are available in multiple formats including XML. Although XML 
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standardizes the representation of information from a syntactic perspective, it does not make explicit the 

relations among the various types of entities in a given resource or across resources. In other words, 

although the XML file for Entrez Gene is machine-processable, it cannot be integrated easily or 

automatically with other information sources without human intervention. In contrast, the pathway 

research community has created a common, formal knowledge model called BioPAX [12] to represent 

biological pathway data. The BioPAX format has not only enabled a uniform representation of pathway 

data, but also provides an information model for representing those data with formally defined semantics, 

which include explicitly modeling the relationships between different pathway entities. The representation 

of pathway data using an ontology enables software applications to interpret and reason over the data, 

letting researchers integrate and process large amounts of data from different sources. Three large 

biological pathway data sources, KEGG, Reactome, and BioCyc, are available in BioPAX format. 

Recent research in Semantic Web technologies has delivered promising results for information integration 

across heterogeneous knowledge sources [13-16]. In effect, the Semantic Web provides a robust 

framework that enables the integration, sharing, and reuse of data from multiple sources. In addition, the 

use of a representation based on a formal language allows software applications to reason over 

information. Commonly used Semantic Web technologies include ontology modeling languages such as 

Web Ontology Language (OWL) [17], data models such as the Resource Description Framework (RDF) 

[18], the SPARQL query language [19], and OWL reasoners such as Pellet [20] and Racer [21]. 

Reasoning tools have been successfully applied over knowledge bases to address biological and health 

care problems [22-25].  

The objective of this paper is to illustrate how Semantic Web technologies can support information 

integration and make it easy to create semantically integrated resources called semantic mashups for gene 

and pathway information. We show how complex biological queries can be answered by the mashups. 

More precisely, in the context of understanding the genetic basis of nicotine dependence, we integrate 

gene and pathway information in order to answer the following queries: Which genes participate in a 
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large number of pathways? Which genes (or gene products) interact with each other? Which genes are 

expressed in the brain? 

The rest of the paper is organized as follows. In section 2, we justify the use of ontology-based integration 

and summarize relevant work on the use of Semantic Web technologies in biomedicine. In section 3, we 

present the ontological framework we created to support the integration. The information sources 

integrated are presented in section 4, along with our integration strategy. Three biological queries and the 

corresponding answers extracted from our knowledge base are explored in section 5. In section 6, we 

discuss the significance of this study, as well as its limitations. Our conclusions are presented in section 7. 

2 Background 

In this section, we discuss the rationale for ontology-based integration and summarize relevant work on 

the use of Semantic Web technologies in biomedicine. 

2.1 Ontology-based data integration 

The traditional approach for integrating gene and pathway information is to create a relational data model 

that can be used to integrate and store both kinds of data. As the experience of the biological pathway 

research community with the BioPAX ontology clearly shows, there are many advantages to using an 

ontology as a knowledge representation model for integration of data from heterogeneous sources [12]. 

One advantage is that the formal semantics of an ontology enable software applications to interpret 

ontology instance data consistently and reason over them. For example, the entities ‘gene’ and ‘molecular 

function’ are represented in the ontology, where they are linked by the relationship ‘has_function.’ 1 At 

the instance level, a particular gene (e.g., Chrna4 in mouse) has a particular function (e.g., ‘nicotinic 

acetylcholine-activated cation-selective channel activity’). This advantage has been discussed in a wide 

                                                      

1 In this paper, we represent ontology concepts in italics and within single quotes (e.g. ‘pathway’) 
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range of application domains including national security [26], geographical information systems [27] and 

biomedical informatics [28].  

Complex biological queries require precisely this kind of reasoning over a large number of instances. 

Although scientists can easily interpret the connections among entities, they generally are unable to 

process large amounts of data consistently. Conversely, computers can identify connections in large 

graphs, but require that relations be explicitly represented. To identify common pathways among 

homologous genes from the 449 genes putatively involved with nicotine dependence, for example, two 

types of (instance-level) information need to be extracted from the relevant knowledge bases and 

processed: homology information and gene-pathway relations. The corresponding types of entities (here, 

‘gene’ and ‘pathway’) and relations (‘homologous_with’ and ‘involved_in’) must be represented in the 

corresponding information model or ontology. 

From a theoretical perspective, without a knowledge model associated with the RDF instance data, the 

discovery of new knowledge through entailment reasoning will be limited. Simple RDF interpretation and 

entailment ignore the “meaning of names in the graph,” as described in RDF semantics [29]. Moreover, 

the W3C RDF semantics recommendation [29] suggests attaching stronger meaning to URI references to 

gain maximum value from an RDF graph written “in a particular vocabulary.” Treating an ontology as a 

vocabulary, with clearly defined concepts and relationships that are used to “type instance values, enables 

class membership based entailment reasoning. Creating an RDF graph by using an ontology as the 

reference knowledge model leads to a “stronger notion of interpretation and entailment” [29]. 

The BioPAX ontology provides a common information model based on RDF/XML syntax for various 

pathway information sources, including, KEGG, Reactome, and BioCyc. Conversely, the gene 

information sources available through NCBI’s Entrez system, for example, Entrez Gene and 

HomoloGene, are by design available only in XML format, and no common information model 

representing their semantics is provided. We therefore created the Entrez Knowledge Model (EKoM) to 

represent NCBI gene information in a formal semantic model. We then created schema level mappings 

between the BioPAX ontology and EKoM, to integrate the two into a single global schema for 



 7 

representing both gene and pathway data. (The details are presented in section 3, Ontology creation and 

schema mapping). 

Ontology-based data integration, subscribing to the Local As View (LAV) data integration theory [30], 

not only uses the formal semantics of the ontology language, but also is a scalable and adaptable 

integration approach. An important aspect of LAV approach is that it “favors the extensibility of the 

system” [30], which is critical here, as other data sources may be added in the future. Another significant 

feature of ontology-based data integration approach is the use of inference mechanisms for information 

gain. An ontology is created using a formal language, the Description Logic–based flavor of OWL 

(OWL-DL) in the case of BioPAX and EKoM, which allows the definition of inference rules that can be 

interpreted and processed by reasoning tools. Given two genes that interact with one another, for example, 

we can also define an inference rule to assert a new relationship that exists between their respective 

product proteins (they either bind together or form components of a larger biological pathway). 

2.2 Related work 

In previous work, we successfully created an RDF representation of the complete Entrez Gene data set 

[31] by mapping the XML elements tags to named relationships. We used XML Path language [32] with 

eXtensible Stylesheet Language Transformation (XSLT) [33] approach to make the conversion from 

native Entrez Gene XML representation to RDF format. In the next step, we integrated this Entrez Gene 

RDF data with the publicly available Gene Ontology (GO) RDF dataset. Using a set of rules, we showed 

how phenotypic and genotypic information can easily be linked using RDF data model [31]. We 

demonstrated the link between the disease ‘congenital muscular dystrophy’ and GO molecular function 

‘glycosyltransferase.’ 

A large body of research exists related to the application of Semantic Web technologies to the life 

sciences domain [13, 15, 16, 34-36]; this section discusses some of these efforts. [37] describes work 

involving the classification of diseases along physio-pathological classes and the identification of 
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taxonomic relations between diseases using KEGG pathway data and GO annotations. [14] presents an 

overview of work by the World Wide Web Consortium (W3C) Health Care and Life Sciences Interest 

Group (HCLSIG) in use of semantic Web technologies toward achieving the vision of “Translational 

Medicine,” as defined in the NIH 2002 roadmap. Many interesting projects were discussed at the World 

Wide Web (WWW) conference at Banff, Canada, in 2007, including use of semantic Web for mining of 

disease-causing genes through integration of genome-phenome data [38] and semantic mashup to aid 

neurosciences researchers [22]. 

The first project [38] discussed the creation of network data structures with annotations and clinical 

phenotypes of human and mouse gene orthologs to identify genes involved in diseases. This work used 

gene-pathway annotations associated with pathway data from KEGG, Reactome, BioCyc, and BioCarta, 

along with phenomic data from multiple sources including Online Mendelian Inheritance in Man 

(OMIM). 

The second project, as part of the BioRDF subgroup of the HCLSIG, involved the creation of a prototype 

implementation that effectively demonstrates the role of semantic Web technologies for knowledge 

integration and discovery [22]. An example query involves the identification of genes participating in 

“cell surface receptor linked signal transduction” (GO: 0007166) that have also been mentioned in 

literature on “pyramidal neurons” [22]. This query involved integration and processing of data from four 

sources, namely, MeSH, PubMed, Entrez Gene, and GO. Another significant capability demonstrated as 

part of this work involved integrating the results of the query described above with images from the Allen 

Brain Atlas [39] to represent visually the location of the identified genes in the mouse brain. 

Other research efforts include [40], which discusses the use of the “RDF semantic network model” to 

improve “life sciences information retrieval.” The paper also describes the notion of “semantic lenses” to 

extract information, which take context into account and are subsequently organized into an enhanced 

display of the most pertinent information. [41] discusses the LinkHub Semantic Web system, which 

facilitates RDF-based integrated access to proteomics data and features a query-interface-based 

exploration capability. 



 9 

The work described in this paper is a natural progression of our previous work [31] and the HCLSIG 

demonstration [22]. Distinct differences include the use of ontologies as a reference model with 

associated formal semantics, ontology schema mapping between EKoM and the BioPAX ontology, and 

rules to reconcile heterogeneous instance bases. 

3 Ontological framework 

In this section, we give a brief presentation of BioPAX ontology and discuss the design decisions we 

made while creating the Entrez Knowledge Model (EKoM). Subsequently, we describe the mapping we 

created between EKoM and BioPAX ontology. 

3.1 BioPAX ontology 

The BioPAX ontology was created to model biomolecular pathways [42]. There are two BioPAX 

ontology releases namely level 1, which represents only metabolic pathways, and level 2, which in 

addition represents molecular interactions, protein post-translational modifications, and the Protein 

Standards Initiative–Molecular Interactions (PSI-MI, http://www.psidev.info/) [43]. The BioPAX 

ontology, level 2, used in the work described in this paper, defines pathway data in terms of concepts such 

as ‘interaction,’ ‘entity,’ or ‘pathway’ (Figure 1) and relationships between them such as 

‘pathway_components’ (between ‘pathway’ and ‘interaction’) and ‘participants’ (between ‘entity’ and 

‘interaction’). As a common representation model, the BioPAX ontology intends to represent metabolic 

pathways, signaling pathways, protein-protein and molecular interactions, gene regulatory pathways and 

genetic interactions data from many different sources including KEGG, Reactome, and BioCyc. The 

BioPAX ontology (level 2) is modeled using the OWL-DL language with DL expressivity of ALCHON 

(D) and has 40 classes with 33 object and 37 data type properties. 
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3.2 Entrez Knowledge Model 

Because no formal information model is available for the representation of gene information in the Entrez 

family of sources (e.g., from Entrez Gene and HomoloGene), we considered the following approaches to 

creating one. We could either create a new ontology to represent gene information from NCBI sources or 

extend the BioPAX ontology schema to include the concepts and relationships relevant to gene 

information sources. We chose not to extend the BioPAX ontology, created specifically to model bio-

molecular pathways [42], but rather to create the Entrez Knowledge Model (EKoM), a model specific to 

NCBI gene information sources and integrate it with the BioPAX ontology. 

Gene records from Entrez Gene contain information about the gene product(s), the chromosomal location 

of the genes, the model organisms in which they are found, and the pathways in which these genes are 

involved. Each record also contains information such as its creation date and current status, also 

represented in EKoM. EKoM is modeled using the OWL-DL language with SI DL expressivity (i.e., it 

uses concept negation, universal and existential quantification, intersection, and disjunction between 

concepts as well as inverse role for relations). There currently are 45 classes defined in EKoM, through 

which we have tried to capture essential data available in Entrez Gene (Figure 2). There are 11 

relationships defined in EKoM, all object properties, which link together the classes. These named 

relationships are either defined in the UMLS Semantic Network [44] or newly created for EKoM. 

Using the example of gene-gene interaction, we describe the modeling approach used for EKoM. Figure 3 

illustrates our approach as applied to a specific gene (CHRNA4). The interaction information from Entrez 

Gene records includes the “original” gene (CHRNA4) and its gene product (cholinergic receptor, 

nicotinic, alpha 4 subunit), the “interactant” gene (CHRNB2) and its gene product (neuronal nicotinic 

acetylcholine receptor beta 2), the textual description of the interaction (“CHRNA4 (alpha-4) interacts 

with CHRNB2 (beta-2)”), and a reference in the form of a PubMed identifier. We modeled this 

information using the concepts ‘gene,’ ‘interaction,’ ‘gene_product,’ ‘protein_db_identifier,’ and 

‘reference.’ 
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3.3 Schema-level integration of EKoM and BioPAX ontology 

With the BioPAX ontology, modeling pathway information, and EKoM, modeling gene information from 

sources in the Entrez system, we have two information models (or schemas) that need to be integrated. 

We found three potentially similar concepts in EKoM and the BioPAX ontology, namely ‘pathway,’ 

‘protein,’ and ‘interaction.’ We chose to reuse the concepts ‘pathway’ and ‘protein’ in EKoM, as defined 

in the BioPAX ontology, instead of redefining them in EKoM. In contrast, although the ‘interaction’ 

concept is present in both EKoM and BioPAX, we identified that its meaning was different in the two 

models. In fact, BioPAX states “Since [‘interaction’] is a highly abstract class in the ontology, instances 

of the interaction class should never be created. Instead, more specific classes should be used. …” On the 

other hand, EKoM does not define any subclasses for ‘interaction’ and instantiates this class directly. 

Therefore, the concept ‘interaction’ defined in BioPAX ontology was not reused in EKoM. 

We integrated the two schemas by importing the BioPAX definition of the concepts in EKoM and created 

relations between EKoM and BioPAX concepts as appropriate. In practice, a gene-pathway relation is 

represented as the relation (defined in EKoM) between a gene (EKoM concept) and a pathway (BioPAX 

concept). For example, the relation EKoM:gene_6261 → EKoM:functionally_related_to → 

bp:KEGGpathway_04730 between the gene CHRNB2 (GeneID: 6261) and the pathway Long-term 

depression (KEGG: 04730). The global schema resulting from the mapping between EKoM and BioPAX 

provides a formal semantic framework for integrating the data from gene resources and pathway 

resources at the instance level. Specifically, it is implemented through class membership relations 

between specific entities (e.g., CHRNB2) in these resources and the corresponding concepts in the 

information model (e.g. ‘gene’). 

3.3.1 Common ontology schema – heterogeneous instance bases 

The availability of pathway information from three large sources (KEGG, Reactome and BioCyc) 

conforming to the BioPAX ontology offers a critical advantage in building a semantic pathway 
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knowledge repository. The assumption, regarding the three instance datasets, is that the common ontology 

schema will enable their automatic and seamless integration. In practice, however, the BioPAX ontology 

(used as knowledge model for the three resources) seems to be interpreted slightly differently by each 

data source provider. In fact, the semantics of these class properties varies across resources, resulting in 

heterogeneous instance bases despite the common ontology schema. More specifically, the instantiation 

of BioPAX ontology differs in the following aspects: 

• In KEGG, the URI for ‘pathway’ instances is based on a unique alpha-numeric identifier. The 

value of the ‘SHORT-NAME’ property is the KEGG identifier of the pathway. The value of the 

‘NAME’ property is the textual description of the pathway. Both values are typed as a ‘XML 

schema string (http://www.w3.org/2001/XMLSchema#string).’ 

• In Reactome, the URI for ‘pathway’ instances is based on the textual description of the pathway. 

The values of both ‘SHORT-NAME’ and ‘NAME’ properties are textual descriptions of the 

pathway. The pathway identifier is associated with the ‘XREF’ property. 

• In BioCyc, the URI for ‘pathway’ instances is based on the BioCyc identifier. The value of the 

‘NAME’ property is the textual description of the pathway. No other property from the ‘pathway’ 

concept is used. 

As illustrated above, the instantiation of the ‘pathway’ concept in the three pathway resources under 

investigation differs in subtle but significant ways. In practice, two major types of issues are identified. 

First, ‘pathway’ instances cannot be compared on the basis of their URIs. In addition, the semantics of the 

properties of the ‘pathway’ concept in BioPAX (e.g., ‘SHORT-NAME’) differs across resources. As a 

consequence, the instance bases for the three resources are heterogeneous, and ‘pathway’ instances cannot 

be easily compared on the basis of the value of these properties. 

These heterogeneous instance bases can be potentially reconciled by using related knowledge such as 

relationships and values associated with each ‘pathway’ instance. The Pathway Knowledge Base (PKB) 

[45] discusses the integration of the three BioPAX conformant data sources using Jena [46] to create RDF 

objects to create a unified store. To support querying across the three data sources, PKB preprocesses the 
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data for syntactic reconciliation including uniformly converting all BioPAX level 1 references to level 2 

and use of a standardized namespace (http://pkb.stanford.edu). In our work, we focused on semantic 

reconciliation that is partially based on syntactic reconciliation (discussed in the next section). 

3.3.2 Reconciling heterogeneity among instances 

The heterogeneity among pathway instances is not only syntactic (e.g., different format for the 

identifiers), but also semantic. For example, as described in the previous section, the identifier for a 

pathway instance in Reactome is the textual description of the pathway whereas in KEGG it is a unique 

alpha-numeric value. We used additional knowledge associated with a pathway instance to assess whether 

two instances are semantically identical or not. This additional knowledge comes from named 

relationships, for example ‘bp:SHORT-NAME’ and ‘bp:XREF,’ linking the pathway instance to other 

entities such as database identifiers and textual descriptions. 

For example, as illustrated in Figure 4, although the instances for calcium signaling pathway are distinct 

in Entrez Gene and KEGG, we observed that they share the same value (hsa04020) for the ‘SHORT-

NAME’ property. We created a rule to assert the equivalence between the corresponding instances: if two 

instances from Entrez Gene and KEGG share the same value for the ‘SHORT-NAME’ property, then they 

must be considered as one. Technically, we assert an ‘owl:sameAs’ relation between the two instances, so 

that a reasoner can interpret them as being semantically identical. Similarly, the ‘pathway’ instances from 

Entrez Gene and Reactome that share the same value for the ‘XREF’ property values are asserted to be 

identical. 

4 Materials and Architecture 

The hypothesis underlying this study is that a mashup of gene and pathway resources created with 

Semantic Web technologies will help answer complex biological queries related to the genetic basis of 

nicotine dependence. The primary gene resource to be integrated is Entrez Gene, while HomoloGene is 
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used to identify homologous genes in various model organisms. In addition, three pathway information 

sources—KEGG, Reactome, and BioCyc—are also integrated in the mashup. While the three pathway 

sources are already available in RDF/XML and conform to the BioPAX ontology schema, the gene 

resources Entrez Gene and HomoloGene, available in XML, first need to be converted to RDF, 

conforming to EKoM, the information model we created for these resources. Figure 5 describes the 

procedure for creation of the knowledge base and the overall architecture of the system. 

4.1 Mapping nicotine dependence genes to Entrez Gene 

The list of human genes described in [6] (in what follows referred to as the original set of genes) consists 

primarily of gene names and gene symbols. In addition, chromosomal location is provided for most genes 

and a short textual description is provided for some genes. Using tools from the eUtils family (EFetch and 

ESearch) [47], we retrieved Entrez Gene records corresponding to the gene symbols and validated them 

against ‘Gene Name,’ ‘Organism,’ and ‘Chromosomal location’ fields from the record. For example, the 

gene symbol SNAP25 maps unambiguously (when restricted to human genes) to the gene identified by 

GeneID: 6616 in Entrez Gene. The mapping was straightforward for 80% of the genes. In 48 cases, 

however, multiple records or, more rarely, no records were retrieved from the gene symbol. Ambiguous 

symbols were disambiguated manually using additional information such as the gene name or 

chromosomal location. For example, TF mapped to both TF and F3 (for which TF is an alias), and was 

subsequently disambiguated to TF (GeneID: 7018) using the name “transferrin”. When no record was 

found for the gene symbol, the gene name was used instead of the symbol to query Entrez Gene. For 

example, the symbol CALCYON did not map to any human genes, but the corresponding name in the 

original set (D1 Dopamine Receptor-Interacting Protein) mapped to the gene DRD1IP (GeneID: 50632). 

At the end of this process, a unique Entrez Gene record was found for each of the 449 genes in the list. 
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4.2 Identifying homologous genes 

HomoloGene contains homology data for several completely sequenced eukaryotic organisms [9]. Entrez 

Gene records contain HomoloGene identifiers that can be used as pointers to homologous genes. In 

addition to Homo sapiens (taxId: 9606), the model organisms under investigation include Mus musculus 

(taxId: 10090), Caenorhabditis elegans (taxId: 6239), Danio rerio (taxId: 7955) and Drosophila 

melanogaster (taxId: 7227). Beginning with a record in Entrez Gene (e.g., ALDH2, GeneID: 217), a link 

is found to record 55480 in HomoloGene, from which the Entrez Gene IDs for homologous genes can be 

extracted. For example, this HomoloGene record identifies aldh2a (GeneID: 393462) in zebrafish. Here 

again, the process of identifying homologous genes from HomoloGene is completely automated through 

the use of EFetch. A total of 1,401 gene records were extracted from Entrez Gene. In addition to the 449 

gene records for Homo sapiens, we retrieved the records for homologous genes in the following model 

organisms: Mus musculus (381), Caenorhabditis elegans (99), Danio rerio (364) and Drosophila 

melanogaster (108). 

4.3 Acquiring gene information 

Resources from the Entrez family, including Entrez Gene and HomoloGene, are made available by NCBI 

in XML. However, we use RDF/XML for the representation of our integrated gene-pathway resource. 

Therefore, we need to convert XML records from Entrez Gene and HomoloGene to RDF. Moreover, in 

order to be able to reason over the RDF store, we require the RDF data to conform to the Entrez 

Knowledge Model (EKoM) we created for this purpose. In other words, entities from the RDF store 

become instances of the classes and relationships in EKoM schema. 

In previous work [31, 48], we developed a method for converting Entrez Gene records from XML to 

RDF, based on XPath and XLST stylesheet transformation. The mapping (created manually) between 

element tags in XML and properties in RDF is recorded as a set of transformation rules in the stylesheet. 

This process transforms a relation implicitly represented in Entrez Gene (e.g., between a given gene and 
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its gene product) into a RDF triple in which this relation is made explicit. Our current works expands this 

procedure by creating class-membership relations between the instances in RDF and classes from EKoM. 

For example, the relation ‘has_product’ between the gene CHRNA4 (GeneID: 1137) (with XML element 

tag ‘<Gene-track_geneid>’) and the protein cholinergic receptor, nicotinic, alpha 4 subunit precursor 

(GI: 4502827) (with XML element tag ‘<Prot-ref_name_E>’) is made explicit and transformed into a 

RDF triple GeneID: 1137 → has_product → GI: 4502827, where GeneID: 1137 is an instance of the 

class ‘gene’ and GI: 4502827 and instance of the class ‘protein’. The process of populating the ontology 

is applied automatically using XPath to the whole set of records in Entrez Gene and HomoloGene. The set 

of triples resulting from the conversion constitutes an RDF graph. The EKoM instance base is a 

‘grounded’ RDF graph [29] as no blank (anonymous) nodes are created during the ontology population 

process.  

4.4 Acquiring pathway information 

The sources of pathway information used in this study include KEGG (Kyoto Encyclopedia for Genes 

and Genomics) [8], Reactome [11] and BioCyc [10]. As mentioned earlier, these three resources share a 

common information model, the BioPAX ontology, and are available in RDF, conforming to either 

version 1 or 2 of the BioPAX format. 

KEGG is a large resource created by the Kanehisa Laboratories in the Bioinformatics Center of Kyoto 

University and the Human Genome Center of the University of Tokyo. KEGG contains information for 

various model organisms about molecular interactions, reaction networks, cellular processes and human 

diseases. We restricted KEGG data to the five organisms under investigation. KEGG is available in 

BioPAX level 1 format. 

Reactome is a curated knowledgebase of biological pathways resulting from collaboration among Cold 

Spring Harbor Laboratory, the European Bioinformatics Institute, and the Gene Ontology Consortium. 

Reactome contains various types of pathways, including metabolic, signaling, replication and regulation 
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processes. Human pathway information in Reactome are manually curated, whereas non-human pathway 

information is generated by electronic projection and ortholog mapping. Importantly from an integration 

perspective, Reactome contains cross-references to other biological resources, including KEGG, UniProt 

and Entrez Gene. We restricted Reactome data to four files corresponding to humans, C.elegans, mouse 

and fruit fly. Reactome is available in BioPAX level 2 format. 

BioCyc is a collection of pathway/genome databases of predicted and curated metabolic pathways for 

many organisms created by the SRI Bioinformatics Research Group. The data in BioCyc is categorized 

based on the level of curation, namely Tier 1 (with at least one year of literature-based human curation), 

Tier 2 (with less than one year of literature-based curation) and Tier 3 (predicted pathways that have not 

undergone any curation). Two files, corresponding to humans (HumanCyc, from Tier 2) and fruit fly 

(from Tier 3), were integrated into the knowledge base (The files for other organisms were not available 

from BioCyc site at this time). BioCyc is available in BioPAX level 1 format. 

As noted above, the three resources use different version of the BioPAX format. KEGG and BioCyc use 

level 1, while Reactome uses level 2. In order to ensure syntactic operability between the three pathway 

resources, we followed the approach suggested in [45] and converted all BioPAX namespace references 

in KEGG and BioCyc were converted to level 2. 

4.5 Implementation 

The Oracle 10g database management system provides native support for RDF and was used as our RDF 

store. Oracle also provides support for querying RDF triples, rule indices and indexing options for 

optimization. The total number of RDF triples generated in the knowledge base is about 1.5 million, with 

the 334,438 triples from Entrez Gene; 695, 301 triples from Reactome; 175, 160 triples from BioCyc and 

352, 793 triples from KEGG. The instance files were converted to N3 format prior to being loaded into 

the Oracle store. The total time taken for this process was about one hour. Three indexes were created, 

one for each of the three components of an RDF triple: ‘subject,’ ‘object,’ and ‘predicate.’ Using the 
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Oracle implementation of the SPARQL query language [19], a set of queries was executed against the 

knowledge base. The average query time was about 30 seconds with the indexes in place.  

5 Queries and results 

The integrated resource we created for both gene and pathway information can be seen as large graph in 

which the nodes are instances of the classes in the BioPAX and EKoM ontologies (e.g., genes, proteins, 

pathways, model organisms) and the edges are semantic relationships among these instances. This graph 

can be queried with query languages such as SPARQL. In practice, a SPARQL query is the formal 

representation of constraints on the graph. Its evaluation against the RDF graph consists in the 

identification of the corresponding pattern(s) in the graph. 

This work was motivated by the following three complex biological queries regarding the 449 genes 

putatively involved with nicotine dependence: Which genes participate in a large number of pathways? 

Which genes (or gene products) interact with each other? Which genes are expressed in the brain? In 

order to answer these questions, we created SPARQL queries, which we ran against the integrated gene-

pathway resource in RDF. In this section, we present the rationale for these queries, the approach we 

used, and the results we obtained. 

5.1 Which genes participate in a large number of pathways? 

Rationale: This query seeks to identify hub genes, that is, those genes involved in a large number of 

pathways. These genes are most likely to play a particularly important role in biological systems. 

Downstream effectors, or proteins in the pathway, are also important as they represent the part of a 

particular pathway that is “closer” to the phenotypic effect of that pathway. Therefore, the objectives of 

this query are to 1) confirm the existence in the knowledge base of known hub genes, 2) identify proteins 

with which those hub genes’ products interact or affect, both immediate and downstream, and 3) identify 

new candidates for further experimental studies. 
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Approach: For the 449 genes from the original set and their homologs in four model organisms, the RDF 

graph is explored to find all pathway entities from the three pathway resources. The list of genes is then 

ranked by the number of pathways in which the genes are involved. 

Results: Table 1 lists the top 10 hub genes in the five model organisms under investigation. MAPK1 and 

MAPK3 are involved in as many as 30 pathways in Homo sapiens, including Axon guidance and Glioma. 

Homology information is not always available. N/A indicates that no homologous gene is present in 

HomoloGene for given gene. In many cases, no pathway information is recorded for zebrafish, despite the 

presence of homology information (indicated by 0). 

In most cases, the hub genes in humans (Homo sapiens) are the same as hub genes in mouse (Mus 

musculus) and, to a lesser extent, in the other model organisms. However, pathways specific to a 

particular organism may reveal a feature specific to this organism or indicate a gap in the knowledge of 

other organisms. For example, although most of the pathways for CALM3 are common to human and 

mouse, one of them (Reactome Event:Metabolism of carbohydrates, identified by 71387) is specific to 

human. When no pathway information is available for a given gene in an organism, it is not possible to 

distinguish between the absence of study for this pathway in a given organism and a negative finding (i.e., 

the absence of participation of this particular gene in the pathway). 

Using the information returned by this query, we created a gene-pathway network for human genes, 

involving 247 genes from the original set and 112 pathways (Figure 6). Four of the genes MAPK1, 

MAPK3, MAP2K1, and CREBBP, involved in many pathways, are found at the center of a cluster of 

pathways, which provides a graphical rendering of the information in Table 1. The same view also clearly 

shows those pathways in which many genes from the original set participate (e.g., SNARE interactions in 

vesicular transport and Calcium signaling pathway). 
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5.2 Which genes (or gene products) interact with each other? 

Rationale: This query also seeks to identify “hub genes”, but from the perspective of gene interaction. 

These genes might play a particularly important role in nicotine dependence, especially if the genes with 

which they interact also belong to the original set. This query forms the basis for establishing networks of 

interacting genes. 

Approach: Interactions among genes from various knowledge bases (HPRD, BIND, BioGrid, etc.) are 

recorded in Entrez Gene. A given interaction between two genes (as represented by an interaction of their 

gene products, or proteins) is often reported multiple times (e.g., in different sources or with different 

supporting evidence in the same source). For the 449 genes form the original set and their homologs in 

four model organisms, the RDF graph is explored to find all interactions (between one gene from the 

original set and another gene), with the number of mentions for each interaction. The list of genes is then 

ranked by the number of mentions. This query takes advantage of the modeling characteristics presented 

in Section 3.2.1 (EKoM schema design). More specifically, the query uses the relationship defined 

between two genes that are related to another gene through the property ‘have_common_pathway.’ 

Results: Five genes from the original set (CALM1, HSP90AA1, GRIN1, SNAP25 and STX1A) interact 

with more than ten other genes each. Figure 7 shows an interaction network derived from the results of 

this query for the 449 human genes in the original set. The five top hub genes are highlighted in the 

network. Table 2 lists the top six interactions with the highest number of mentions. Of note, Table 2 

includes mentions of interactions that are not explicitly listed in the gene records from Entrez Gene, but 

rather revealed from the integrated knowledge base through the harmonization (reconciliation) of 

interaction identifiers across sources. For example, the gene SNAP 25 [Homo sapiens] (geneID: 6616) 

has fifty reported interactions in the Entrez Gene record. Forty seven additional mentions (but no 

additional interactions) are found for this gene in our integrated resource. Figure 8 shows all interactions 

for the gene SNAP25, along with the number of mentions for each interaction. 
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5.3 Which genes are expressed in the brain? 

Rationale: The neurobiology of nicotine dependence has already shown strong connections with various 

neurotransmitters in the central nervous system. Therefore, we want to identify those genes from the 

original set that are known to be expressed in various parts of the brain in order, for example, to focus 

subsequent experimental studies that could then examine gene function. 

Approach: Although specific tissues may be mentioned in textual descriptions in the Entrez Gene record 

and would be amenable to text mining techniques, no explicit links to tissues can be easily and reliably 

processed. In contrast, the BioPAX ontology models the anatomical or tissue location using classes such 

as ‘bioSource’ and properties such as ‘TISSUE,’ both linked to ‘protein.’ Starting from a gene from 

Entrez Gene, we can thus follow its links to proteins (gene has_product protein). As mentioned in section 

3.3.1, ‘protein’ is common to EKoM and BioPAX and bridges between gene resources (our starting 

point) and pathway resources (where we find the information about tissues). However, although the 

concept ‘protein’ is shared by EKoM and BioPAX (at the schema level), protein instances from Entrez 

Gene and the pathway resources use distinct identification schemes (URIs). As a consequence, it is not 

possible to automatically exploit tissue information in relation to genes. 

Results: Because of heterogeneity in the identification of protein instances, our query did not return any 

results. However, we verified that if protein instances were reconciled (e.g., through the use of a protein-

centric integrative resource such as UniProt), we would be able to link genes to tissues. For example, in 

Reactome, the protein Catechol O-methyltransferase instance is represented as 

‘UniProt_P21964_Catechol_O_methyltransferase__EC_2_1_1_6_.’ On the other hand, the Entrez Gene 

record identified the protein through its name ‘catechol-O-methyltransferase.’ We manually created a 

mapping between the two instances (as we did to reconcile pathway instances), which enabled the 

traversal of the RDF graph from ‘gene_1312’ (COMT Catechol O-methyltransferase) → 

‘ekom:has_product’ → ‘catechol-O-methyltransferase’ → ‘bp:COMMENT’ → ‘….TISSUE 

SPECIFICITY: Brain, liver, placenta, lymphocytes and erythrocytes…..’ Here again, the comment field 
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needs to be parsed for keywords such as ‘brain,’ a feature supported by RDF. However, the semantics of 

this text field is explicit (TISSUE SPECIFICITY). The results are therefore likely to be reliable. 

6 Discussion and Future Work 

6.1 Technical significance 

The ontology-driven framework for creating integrated knowledge bases outlined in this paper is flexible, 

sustainable and extensible. Answering complex biological questions typically requires manual work or 

the development of specific software. In contrast, we showed that the integrated resource we created can 

be used to answer various types of questions, demonstrating the flexibility of our approach. Because 

manual intervention is required only for the creation of the ontology and linkage between XML element 

tags and classes and relationships from the ontology, it is possible to process large volumes of data and to 

update sources frequently. Our effort is therefore likely to be sustainable. Finally, additional information 

sources (e.g., transcriptome resources such as UniGene and proteome resources such as UniProt), can 

easily be added to the integrated resource by extending the ontology to accommodate new types of 

instances. 

Some key issues encountered in this study are worth discussing and include the central role played by the 

ontology in typing instances, the inference of new knowledge (i.e., information gain) and the 

reconciliation of heterogeneous instances.  

Typing instances. A reference model with well-defined, formal semantics is essential to the creation of 

an effective knowledge repository. XML only provides data types such as ‘string’, which cannot be used 

for reasoning purposes. It is virtually impossible, for example, to extract all instances of proteins from the 

Entrez Gene XML file. Therefore, in the absence of an ontology, only particular instances can be queried, 

not classes of instances. In contrast, typing the instances from information sources with concepts from an 

ontology through class-membership relations makes it possible to easily query all instances of a given 
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class. Query 1 presented in section 5.1 (Which genes participate in a large number of pathways?) can be 

used to illustrate this feature. In this query, we need to traverse the graph to find what genes are related to 

pathways through the relationship ‘functionally_related_to.’ In the absence of an ontology to type gene 

instances, the entry point to the graph would necessarily be an individual gene and 449 such queries 

would need to be issued to find all gene-pathway associations for the 449 genes from the original set. In 

contrast, with all instances of genes typed with the class ‘gene’ from the ontology and all instances of 

pathways typed with the class ‘pathway’ from the ontology, this biological question requires only one 

query to extract all relations between instances of the class ‘gene’ and instances of the class ‘pathway’ 

through the relationship ‘functionally_related_to.’ Moreover, it does not matter whether or not the 

‘functionally_related_to’ is used elsewhere in the ontology, as queries can put constraints on its domain 

and range. 

Inferring new knowledge. One significant advantage of typing instances with classes from an OWL DL-

based ontology is the ability to infer new knowledge from the gene-pathway knowledge base. This feature 

can be illustrated by the results of Query 2 presented in section 5.2 (Which genes (or gene products) 

interact with each other?). Although we did not discover any new interactions, we found additional 

mentions for some interactions, not recorded in Entrez Gene. These additional mentions were inferred by 

transitivity (i.e., if interaction identifier I identifies the interaction of gene A with gene B and the same 

interaction identifier I also identifies the interaction of gene B with gene C; then it can be inferred that 

gene A and gene C also interact). Information gain through entailment (subsumption) is an important 

advantage of ontology-based data integration. As shown in the example above, information gain can be 

implemented through rules on the knowledge base. The new information inferred from these rules is 

added to the knowledge base and extends it. Although new interactions were discovered, the example 

above illustrates the potential of ontology-based inference from biological information sources. 

Reconciling heterogeneous instances. One important issue encountered in this study and, more 

generally, inherent to Semantic Web approaches to integrating resources, is the absence of a central 

authority or universal framework for identifying and reconciling instances. For example, the pyruvate 
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metabolism pathway is identified by 00620 in KEGG and 71406 in Reactome. When both instances are 

present in an Entrez Gene record (e.g., GeneID: 4191), nothing indicates they both refer to the same 

pathway entity. A knowledge base created from Entrez Gene is therefore likely to contain heterogeneous 

instances, limiting the quality of integration. 

One solution to this problem would be for the community to create a resolution service for instances, 

which could take the form of a common registry. This approach would be costly and difficult to maintain 

as the resources to be integrated evolve. Alternatively, reconciliation can be implemented locally and 

automatically if rules can be created from the information available in the sources. We used the latter 

approach in this study. As mentioned in section 3.3.2, instances referring to the same entity in different 

sources were identified automatically by leveraging cross-reference information and linked together using 

the ‘owl:sameAs’property. 

6.2 Significance for biologists 

Today, a major contribution of information technologies to biology remains facilitating the work of 

biologists by enabling them to integrate information from heterogeneous sources and process large 

amounts of data. This integration then can facilitate generation of new hypotheses about biological 

significance to be confirmed by future experiments. 

We showed that it was possible to integrate gene and pathway information into a common framework and 

to reason over the integrated resources, taking advantage of an ontology to ensure the consistency of and 

facilitate queries against the knowledge base we created. We also showed that standard tools and 

technologies could support various types of queries and that the information returned by these queries 

could be easily converted to produce the kinds of representations used by biologists (e.g., interaction 

networks created with Cytoscape). 

Among the 449 genes from the original set, only 247 are linked to pathways described in the three sources 

integrated in our knowledge base (Figure 6). Analogously, gene-gene interactions are recorded in our 
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resources for only 219 genes from the original set (Figure 7). In addition to hub genes, likely to play a 

particularly important role in biological systems, the genes identified by genome-wide linkage and 

association studies as potentially related to nicotine dependence for which no interactions to other genes 

and links to pathways are currently recorded probably deserve the attention of researchers. 

6.3 Limitations and future work 

The study presented here has several limitations, which we plan to address in the future, regarding the 

heterogeneity of instances, the identification of anatomical information and the absence of integration 

between structured information sources and the biomedical literature. 

Heterogeneity of instances. As mentioned earlier, the presence in the knowledge base of distinct 

instances referring to the same entity results in limited integration between information sources. In this 

study, we observed this phenomenon mostly for proteins and pathways. Proteins were generally identified 

by their name, making it difficult to match them exactly and reliably across resources. Pathways, on the 

other hand, were generally identified with identifiers local to a given resource, making it impossible to 

relate them across sources in the absence of a mapping service. We solved the problem in part for 

pathways by exploiting the cross-reference information provided in some sources, such as Reactome. We 

would need to integrate additional information sources to bridge across namespaces for proteins. We plan 

to integrate UniProt for this purpose. 

Anatomical information. The reason why Query 3 (Which genes are expressed in the brain?) was not 

successful is not because of the absence of anatomical information, but rather because of the impossibility 

to bridge between proteins across resources due to instance heterogeneity. Moreover, extracting 

anatomical information from the comments field in Reactome, related to the ‘protein’ concept in pathway 

resources by ‘bp:COMMENT’ relationship, was possible, but not straightforward as the field had to be 

parsed for keywords. However, had proteins been perfectly integrated and anatomical information been 

present in a specific string, queries would still have been suboptimal, due to the absence of a reference 
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ontology of anatomy. In fact, to a biologist, the query “expressed in the brain” is actually a shortcut for 

“expressed in the brain or any of its parts.” An ontology of anatomy such as the Foundational Model of 

Anatomy [49] would support the expansion of the query by exploiting subclass and partonomic relations 

among anatomical entities. More generally, reasoning over specialized information sources such as gene 

and pathway resources often benefit from reference ontologies for domains such as anatomy, diseases, 

and drugs. 

Integrating knowledge extracted from the biomedical literature and structured knowledge bases. 

This work is a pilot contribution to the Biomedical Knowledge Repository under development at the U.S 

National Library of Medicine (NLM) as part of the Advanced Library Services project [50]. This 

repository integrates knowledge not only from structured resources (database and knowledge bases), but 

also from the biomedical literature (e.g., MEDLINE), in order to support applications, including 

knowledge discovery. This study is limited to the information extracted from five structured information 

sources. However, we are working on the integration of knowledge extracted from MEDLINE citations. 

To select the appropriate corpus from MEDLINE, we plan to use not only a PubMed search on “nicotine 

dependence,” but also the list of PubMed identifiers (PMIDs) cited as evidence by the curators of the 

pathway information sources. Combining these two sources of information, structured and unstructured, 

is expected to fill the gaps observed in pathway resources for some organisms. 

7 Conclusion  

Semantic Web technologies provide a valid framework for information integration in the life sciences. 

We illustrated how two gene information sources (Entrez Gene and HomoloGene) and three pathway 

information sources (KEGG, Reactome and BioCyc) can be integrated into a knowledge base using RDF 

for its representation. Ontology-driven semantic integration represents a flexible, sustainable and 

extensible solution to the integration of large volumes of information. Because instance entities are typed 

with classes from the ontology, ontology-driven integration ensures the consistency of the knowledge 
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base and facilitates the query process. For example, we showed that queries could be formulated for the 

class ‘gene’ as a whole, not only for individual gene instances. This work also illustrate the versatility of 

the integration framework, as no specific tools are required to produce results that can be imported in the 

tools used by biologists for visualization purposes. The limitations encountered in this study can be 

compensated for by integrating additional resources to bridge across namespaces (e.g., UniProt), to 

support reasoning (e.g., anatomical ontologies), and to broaden the scope of information sources (e.g., 

with information extracted from the biomedical literature). 
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Legends 
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Figure 4. Reconciling KEGG and EKoM pathway instances through a rule 

Figure 5. Overview of the creation process for the gene pathway knowledge base 

Figure 6. Gene-pathway network for the genes from the original set 
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the number of mentions for each interaction) 



 31 

 

Table 1. List of 10 genes participating in the largest number of pathways (ordered by genes in humans) 

Number of pathways per organism 
(Entrez Gene identifier) 

Gene 
Symbol 
(Homo 

sapiens) 
Homo 
sapiens 

Mus 
musculus 

Caenorhabditis 
elegans 

Drosophila 
melanogaster 

Danio rerio 

MAPK3 30 
(EG:5595) 

29 
(EG:26417) 

N/A N/A 0 
(EG:399480) 

MAPK1 30 
(EG:5594) 

29 
(EG:26413) 

0 
(EG:175545) 

3 
(EG:3354888) 

0 
(EG:360144) 

MAP2K1 24 
(EG:5604) 

24 
(EG:26395) 

0 
(EG:171872) 

2 
(EG:31872) 

0 
(EG:406728) 

ALDH1A3 18 
(EG:220) 

5 
(EG:56847) 

N/A N/A 0 
(EG:751785) 

ALDH2 16 
(EG:217) 

15 
(EG:11669) 

15 
(EG:175691) 

15 
(EG:34256) 

15 
(EG:393462) 

NFKB1 12 
(EG:4790) 

10 
(EG:18033) 

N/A N/A N/A 

CREBBP 12 
(EG:1387) 

12 
(EG:12914) 

N/A N/A 0 
(EG:566841), 

0 
(EG:100002394) 

CALM3 10 
(EG:808) 

9 
(EG:12315) 

N/A N/A 0 
(EG:327379) 

CALM2 9 
(EG:805) 

9 
(EG:12314) 

N/A N/A 0 
(EG:368217) 

CALM1 9 
(EG:801) 

9 
(EG:12313) 

N/A N/A 1 
(EG:321808) 
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Table 2. List of six gene-gene interactions, among the 449 genes putatively involved with nicotine dependence, 

with the largest number of mentions (human genes) 

 Gene-gene interaction Number of 
mentions 

1. 

NR3C1 nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor) 
(GeneID: 2908) – 

AR androgen receptor (dihydrotestosterone receptor; testicular feminization; spinal 
and bulbar muscular atrophy; Kennedy disease) (GeneID: 367) 

12 

2 
SNAP25 synaptosomal-associated protein, 25kDa (GeneID: 6616) – 

STX1A syntaxin 1A (brain) (GeneID: 6804) 
11 

3. 
SNAP25 synaptosomal-associated protein, 25kDa (GeneID: 6616) – 

VAMP8 vesicle-associated membrane protein 8 (endobrevin) (GeneID: 8673) 
10 

4. 

NR3C1 nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor) 
(GeneID: 2908) – 

NR3C2 nuclear receptor subfamily 3, group C, member 2 (GeneID: 4306)  
10 

5. 

PTGES3 prostaglandin E synthase 3 (cytosolic) (GeneID: 10728) – 

HSP90AA1 heat shock protein 90kDa alpha (cytosolic), class A member 1 
(GeneID: 3320) 

10 

6. 

NCOA1 nuclear receptor coactivator 1 (GeneID: 8648) – 

AR androgen receptor (dihydrotestosterone receptor; testicular feminization; spinal 
and bulbar muscular atrophy; Kennedy disease) (GeneID: 367) 

10 
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Figure 1. Top-level BioPAX concepts and relationships (Protégé TGViz plug-in diagram with 1-level fan-out) 
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Figure 2. Top level concepts and relationships of EKoM (Protégé TGViz plug-in diagram with 2-level fan-out) 
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Figure 3. Interaction between genes modeled in EKoM (using gene 1137 and 1141 as examples) 
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Figure 4. Reconciling KEGG and EKoM pathway instances through a rule 
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Figure 5. Overview of the creation process for the gene pathway knowledge base  
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Figure 6. Gene-pathway network for the genes from the original set 
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Figure 7. Interaction network among the genes putatively involved with nicotine dependence (hub genes are 

highlighted and labeled) 
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Figure 8. Interaction network for the genes interacting with SNAP25 (the labels on the edges represent the 

number of mentions for each interaction) 

 
 
 


